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GREEN’S TENSOR AND THE BOUNDARY INTEGRAL
EQUATIONS FOR THIN ELASTIC MULTILAYER
ASYMMETRIC ANISOTROPIC PLATESY}
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The matrix of quasistatic fundamental solutions of the averaged equations of elasticity for a thin multilayer plate of arbitrary
asymmetric construction with general anisotropy of the layers is constructed. The main difference from the classical case arises
when analysing the closely associated processes of bending and tension—compression—shear since, generally speaking, these plates
do not contain a neutral plane (a plane that remains undeformed during bending). The reciprocity theorem in steady-state dynamics
and statics is used to obtain integral identities. For the main types of related boundary-value problems of statics, a system of
four boundary integral equations is derived. The singularities of the kernels are studied and the properties of the equations are
investigated. © 1997 Elsevier Science Ltd. All rights reserved.

1. The main purpose of this paper is to construct boundary integral equations (BIE) for the basic
boundary-value problems of associated bending and tension—compression-shear of a thin multilayer
elastic plate. The association is due to the asymmetrical arrangement of the layers over the depth and,
at the same time, the substantial anisotropy of the layer material. In physical terms this means that,
generally speaking, every longitudinal plane bends and deforms and there is no neutral plane. We
consider the most general case where both the equations and the boundary conditions are closely
associated, so that the additional terms are of the same order as the classical terms.

A detailed analysis and classification of the equations and boundary-value problems has been given
in [1-4]. In [3, 5] the problems of statics were solved by introducing complex potentials for the
displacements, which enabled an analytic technique to be used akin to the method of Kolosov,
Myskhelishvili and Lekhnitskii [6-8]. However, in some cases it is preferable to use BIE. A thorough
study has been made of their use in individual bending and planar problems [7-11], but not in associated
situations.

There are quite a few algorithms for the numerical solution of various BIE (the method of boundary
elements, the method of expansion in terms of special polynomials, etc.) [9-12]. It is therefore possible
to use standard procedures. The method of complex potentials previously employed [5] is less
standardized in this sense, although it is easy to use to obtain solutions in closed form for a number of
canonical regions.

2. We consider the stress—strain state (SSS) inside (far from the edges of) a thin packet of N ideally
coupled elastic layers. The layers are arbitrarily arranged over the depth. For instance, they might be
asymmetrically arranged about the mid-plane of the packet. It is assumed that each jth layerj = 1, 2,
..., N has a constant thickness ; and density p;, and its elastic properties are described by the three-
dimensional Hooke’s law with stiffness ratio G;. The general anisotropic case where each matrix G;
contains 21 independent constants is allowed.

We shall assume that the half-thickness of the packet 4 is much smaller than the characteristic scale
of deformation L in a longitudinal direction € = h/L < 1. We shall also assume that the ratios of the
densities, the elastic and geometric parameters of the layers are incommensurate with g, that is, are of
order one as € — -0, and the characteristic time of the dynamic process is quite large and of order not
less than O(t-:‘l). We denote the transverse and longitudinal Cartesian coordinates by x; = z, x = iyx,
(o = 1, 2), respectively, z; < z;, are the coordinates of the front surfaces of the jth layer, and Q is the
region that the plate occupies in plan. Suppose that the normal and shear stresses on the front surfaces
of the plate are given in the form

Ol =07 (X,1), Ouz=To(x,0) (27 =2, 2" =2y,) (2.1)
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where 6™ = O(1), 7" = O(e™). The last condition is imposed for convenience, since it ensures that the
limiting orders of response of the plate to shear and normal loads are equal.

If the layers are both asymmetrically stacked and anisotropic, the asymptotic principal part of the
SSS (with relative error O(g)) satisfies the following elasticity relations

W, = w(x,1), Uj =u(x,t)+z0

(0=1i,08,. 8, =—0,w, 0 =0/0x)

euB = EaB +ZeuB, ea‘} = yz(aﬂua +auuB), Baﬂ = aaGB
Zj+l

Olp = Xop(T; )4 +29). (o Map) =2 | (L. 2)0gd

iz
Qo3 =0gMyp. (0,B=12; 162)
Xi1 = 11(¥119) + Y1692 ) +i2(Y1691 +¥1292)

Xi2 = in(Y|63| +Y6632)+i2(Y6631 "'Yzc;az)

Yir Yie Y12 det(G”)
C=lYis Yoo Yool Ypy= L Go=G ::g
Y21 Y Y2 " det(Go) ( )

Here W; and Uj; are the deflection and longitudinal displacements (and are mdependent of the layer
numbers dap are the stresses, £, and 0,g are the deformations and curvatures in the plane z = 0, Qg
and M are the longitudinal forces and moments in the plate section, and Q,; is the shearing force.
For convenience in the ca]culatxons we have slightly changed the expression for the shearing force of
[5] and omitted the terms z*t%, — 27t on the right.

The indices 4, 5, 6 in the initial 6 x 6 stiffness matrices G correspond to stresses with indices 23, 13,
12. The matrices G are formed from the average stiffnesses of the current layer G is the principal
minor in the initial matrix G, and the minor G/ is obtained by bordermg the minor Gy by the pth row
and gth column below and to the right. These relatlons are discussed in more detail in [2-4]. The basic
equations take the form [2, 3, 5]

99X op (D1 )Ju =3 Xap(D2 ) gradw+ 7, =0
2.2)

o.=% [ pdz D=3 [ 2+ T dz 23)

J oz {] J g j
Ty=Tg—1q 5=06"-0" +div(z“'r+ —z"r')
The difference from the classical relations of the theory of plates of symmetric construction is that the
equations of bending and the plane stressed state (2.2) are associated. In both the equations and the

forces (moments), the bending (D;) and membrane stiffnesses (D) are accompanied by non-zero mixed
stiffnesses (D,) (8 o+1 is the Kronecker delta, aff = 11, 12, 22)

Vop|
xaﬂ
Correspondingly the boundary conditions on dS2 [4, 5] are assigned jointly for the two types of equation

(n and 71 are the unit vectors of the outward normal and the tangent, with dQ traversed in a positive
direction):

Cup
My

D, D,
D, D,

Eap
9u|3

\ +88,, (24
- (1+5%) )
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the first boundary-value problem—u,, u., 0, = —d,w, w are given;
the second boundary-value problem—the longitudinal forces Q, and Q,, the bending moment M,, and
Kirchhoff’s shearing force P, = Q, + d.M; are given.
One might also consider “crossed” (of the form u,, Q,, 6,, P,, for example) or mixed boundary
gonditions. In the Cauchy problem, the initial conditions at ¢ = 0 are set only for the functions w and
w.

3. Suppose that the plate oscillates harmonically as €'* (this time factor is omitted below). Let
V = (uy, w)and V* = (u*, w") denote any two sets of displacements which give an SSS of a finite or
infinite plate and correspond to individual loads T = (T,, T;) and T = (T%, T3"); the boundary
conditions will be specified later. We will write the reciprocity relations which both SSS must satisfy.
These will be of importance later, and so we shall discuss them in detail. Consider the “crossed” potential
Energy density =, the kinetic energy T, the work of individual loads a and the vector i = ign, (o,

=1,2)

n(V.VH) = Y4 (e 00ty +0,sMlp). T(V.V*)==Hp.oPwwh
a(V,T“) =u T} +wT, na(V,V“) = ugQla +OpMbgs + w0l

The reciprocity theorem. For any two states V and V* of an asymmetrically multi-layered anisotropic
plate, the following relations are satisfied

t(V.VE) 42V, VE) = r( V2 V)4 1(VE, V)

(3.1)
a(V,T”)—a(V“,T):divn(V, V“)—divn(V”,V)
M(V,V*)+9(V,V¥)=1(V¥,V)+ (V¥ V)
A(V,T")—A(V“,T):afn{qu,, — 4,0 +upQ; -
(3.2)

—uQF +05M, -6, M) +wHB, —wP! ldI

(1,9,4)= | (%,7,0)dQ
Q
The proof can be obtained from the general theorem for a three-dimensional elastic body (applied to

the asymptotic principal part of the SSS) or by transforming Eqs (2.2), written in terms of the force and
momentum

GBQQB +T0. =(

gy 00w 0403 pu0Pw =T

to the form
2{1:(V.V”‘)+1’(V.V")}=a(V,T")—div1|(V,V") (33)

By virtue of Eqgs (2.4) and the symmetry of the stiffness matrices, the expressions for the energy densities (3.3)
are symmetric bilinear forms for the deformations (curvatures) or forces (moments), whence Eqs (3.1) and (3.2)
follow.

Note that when multiplying by the frequency i@, we formulate Egs (3.1) and (3.2) for the powers in
an obvious way (without the factor 2 on the left-hand sides), while the vector n will give the power flux
density.

4. We will derive the BIE by the standard method [8, 9]. Let V* = V¥(x, xo) be a formal solution of
Egs (2.2) for an infinite plate with individual loads in the form of delta functions. Then from relations
(2.1), (2.3) and (3.2) for
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i =FHBI(X), oF =FK8(x")
T =883(x"), T =848(x")+20029,8(x") 4.1)

X' =X—-Xq, X €Q, 2, =}/2(z+ +z')
we obtain the relations

85w(xo) + 8% g (X0) + 2080 (x0)} = [{U4T, + w*T3 J2+
Q

+ { {uhQ, —u, 0 + Uk O, ~u 0" +OUM, -
an

~0,M} +wHP, —wP*ldl (4.2)

From formula (4.2) we can determine the displacements at any point x, if the displacements and loads
on the boundary 9 are known. Letting the point xy approach the boundary dQ, we obtain the BIE for
the unknown boundary conditions. Using the above scheme, we obtain the fundamental solutions and
BIE for problems of statics.

5. We will find the Fourier transforms of the fundamental solutions of the equations of statics (2.2)
with the right-hand sides (4.1) (omitting the superscript p in obvious cases)

f'(s)=°f Tf(x')e‘“'dxfdxg, §=igS,

-0 —oo

¢.1)
1 oo e o0 . .,
f(s)=m J e¥ds | £ (x")e "2 ds,
We obtain
P pal 4 Tl* T =8k
P Pn Puf w2 (=0 | T =88 —izs. 8
Pu Pn Puf ] fimy ] 0%
where
ipPop =€ ™ pXap(D1)e™. igpys = e ™ pXap(D2)e™
_ -2
P33 =€ “aagxap(l)a)grade”‘. Po = Pubn ‘P122 (-2)

P=PoPy3— P22P123 4 |P§3 +2p13p3Pi3
ug(s1,5,) =hlp™, w'(s.5,) =hip™! (53)
hy = bogTy +ibosTy, By = by Ty ~ibysT;

by = pypy— P%s' by, = p13p23 — P12P33 (54)
b3 = paP3 — PuPi3» bn=py (162)

Expressions (5.2) give the homogeneous characteristic polynomials of the corresponding operators in
Egs (2.2); the homogeneous fourth-order polynomials py(s;, s,), p3s(sy, 52) are characteristic of the
operators of the plane problem and the bending problem with D, = 0 and the homogeneous eighth-
order polynomial p(sy, s,) is characteristic for the entire system (2.2). If p = 1, 2, h%(s,, 5,) and A% (sy, 52)
are homogeneous polynomials of degree six and five respectively, h%(s;, o) and A3(s;, ;) are
homogeneous polynomials of degree five and four.
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Note that, by virtue of the fact that the system of equations (2.2) is elliptic [3], the equation
P(51, 52) = 0 has no real roots. We will consider the general case of non-repeated characteristic roots
A and introduce the notation

p(1,5,) = A(Dy,D,.D,) kﬁ(;2 — sk )2 - 51k

p(LA)=0, A eC, ImA, >0, A(D,,D,,D;)=conste R

ne(s1.5) = —il(s"—sZ) =—iA(D;,D,,D;)(s, = 5;A )1 (s2 —s,k,)(sz —s,x,)

53— 5 - Ik
rk(l,lk) = 2(Im kk )A(D],DZ, D3)113‘(x" -X,)(lk "'X,)
aP(shsz)

se=shy T (l’xk) =-F (L)

rk(‘sl’sllk) = as,

It also follows from Eqs (5.4) that
(LR ) =RE(LA,) R (LA )=-RF(1A) (m=12)

R (L) ==k (LA) H(1Lh) =R (LA,)

We will show that there are originals of (5.1) for displacements u!., w*.,

1. We will first assume that sy € (—e, 0] and syx"; < 0 in the inner integrals of (5.1). Integrating with
respect to s; € [-R, R}, we close the contour of integration in the lower complex half-plane Im s, < 0
by the semi-circle I'z: s, = Re™. Then, for sufficiently large R (performing the summation from k = 1
tok = 4, §; =x7 + Ax’,) we have

{ f - }(ug )* e-iszx’zdsz =-2R 3 Res{(u: )'e_isz*’z}

rof s2=hen

J(utY e%ids, = O(R) 50, R +eo (n=1,2)

Tr
(55)
T h: (sl 'SZ) e—i.\'zxﬁdsz = __2_-5_2 h: (l’xk) e-isllkxi
2w P(51:57) s 7 n(LAy)
0 o . h"(l,l ) 0 sk
1 = (3 k d
_‘L -J; (ua) dsld32 21‘2 ')‘(l, lk) ’ 5 5

2. Considering the outer integrals along the ray s, € (0, +¢°}, sy, = 0 in (5.1), we obtain the conjugate
expressions to (5.5). Continuing in this way for the other displacements, we obtain

u: = —22 Re{C:kll (Ck )}9 Re(iSICk) <0

wh 9
) =-2Y Resi \ L) (Lp=12) (5.6)
o Cak

w'=2% Re{‘-‘;k’_z@k )}

= gl (=i )n_l 1 1 3mi
I = £ =A%k { mtm e __'_}
(G (j) p ds, D] Ing, +y-1 5 n+ 5
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chy he(LAy)
Befo— L | (LA) 6.7
carll  27n (LA ) |ing (LA, )
el —h;(l’;"k)

where v is Euler’s constant.

Notice that the contribution to the displacements corresponding to the term 3mi/2 is zero. For this
reason, the result is the same for x’, = 0 and x’, < 0. This can be verified directly and its physical
interpretation will be given below. The final expressions for the displacements, angles of rotation of
segments, forces and moments will take the form

w? =25 Re{cd f(G0)}, ud =2 Re{cd, £C0)}

05 = 23 Re{A§ el /' (C)}

wh =23 Refch (L)), ub =2X Re{ck 7€)} (5.8)
0% =2X Re{A§'ch f7(C)}

F&)=BE (g, +y-%)

035 = 2Z Re{qop f (G, )}, 03, =23 Re{g1:Ci'}

0y =23 Re{glli'}, O =23 Re{ghnili?} (59)
(e Ol © M3, Mig: q;ipuqﬁm  migymig, )

where qopr, Mok, Gosk are rational-fractional functions of the characteristic roots A, obtained
by substituting the displacements (5.8) into expressions (2.4). At the point X = Xg the displacements
u¥o(x, xg), angles of rotation 8%,(x, xp), forces and moments qup(x, xp) and M (x, Xg) have an integrable
(logarithmic) singularity. The functions u", = na®, u". = tut, Q°, = 301 + 201,03 + n30%, =
n50%, Q% = ninlQ% - Q1)) + (11 -nH)Q% (u © 6,0 & M, n = igng, 7 = iyT,) behave in exactly the
same way. The functions Q",5(x, Xo), M*,5(x, Xo) and Q2s(x, xo) (like the functions Q35 = n,Q%,
P3(x, xo)) have a simple pole; the functions Q%s(x, xo) and Ph(x, xo) have a second-order pole.

The second-order singularities appear because it is an associated bending and tension-
compression-shear problem. They do not arise for a symmetrically-stratified plate D, = 0, zy = 0. This
creates an additional difficulty and requires special investigation.

6. Generally speaking, the fundamental solutions (5.8) are determined to the accuracy of any solution
of Eqs (2.2) with zero right-hand side. Solutions of a homogeneous system of equations of this kind
can be obtained by the method of complex potentials [3, 5], for instance. The fact that formulae (5.8)
contain multivalued (logarithmic) functions is important. The coefficients ¢k, c%, ¢, c3 in the
logarithms are also completely determined by the method of potentials starting from the condition that
the displacements, angles of rotation, deformations and curvatures (or longitudinal forces and moments)
are single-valued, provided that the principal vector and principal moment of individual loads (4.1) and
boundary loads (for the solution (5.8)) correspond on any closed contour that includes the point x,.
The expressions for the constants are the same as (5.7). Thus, the kernels of Eqs (4.2) are single-valued
functions, and the logarithmic components in the solutions (5.8) give the simplest and minimal set of
multivalued functions needed to construct them.

A detailed general analysis of the 20 relations of one-to-one correspondence is given in [5]. We give
some of these for loads (4.1)

4y Re{z"q'z" II} u o H, 4ny Re{tqzq,‘ } oy

‘lm



Green’s tensor and the boundary integral equations for thin elastic multilayer plates 489

-1 1}
A miv
13

Mmoo

4ny, Re{i

Cgﬁ} u um 12,3) 1)

X Re{iGich } =0, TRe{itich}=0, Y Reficty }=0

The last three equations have already been taken into account in formulae (5.8) in the transforms 7,(§;)
of the generalized functions; they express the fact that the displacements and angles of rotation are
single-valued.

7. To transform Eqs (4.2) with kernels (5.8), we will prove an auxiliary assertion. We consider a singular
integral over the sufficiently smooth contour 0Q of a simply-connected region Q (! is an arbitrary arc
coordinate)

}"mk(,fvx())=a{-l fC(:)dl, xeaQ, xO eaﬂ
k

where f(x), /™ fim; = 1,2, ..., m - 1) are real functions of the Holder class on 9Q which have a
smooth continuation in the regxon Q. remaining on the left (right) when 0Q is traversed in a positive
direction. We introduce the functions g(x) = (t; + AcTr) ™, T = igT,, the unit tangent vector at the point
x € dQ.
Lemma. The limiting behaviour of the function
mk(f xO) mk(f’XO)’ XOGQIv Xo—”‘oeag

is governed by the equations (V.p. is the principal value of the integral)

(m=DF5(f.X0) = Fo_1 (3. F(x),%0) a1
FR(s.sa) = mfR(sa)+ V. | 2
a G

Firx0) =5 xou(so)+op | 2B}

F(x) = f(x)g, (x)
The proof follows from the Sokhotskii-Plemelj [7] theorem and the equations
dl fo_ 1

a8 T

—{th 3.0 -3 (R0t

8. Suppose, to fix our ideas, that the region Q = Q. in Egs (4.2) is finite and simply-connected
and has a sufficiently smooth boundary. Let the point x, € Q, approach the boundary of the
region. Using representations (5.8) and (5.9), formulae (7.1), relations (6.1) and the equations

r=123)
2
e =Ml = Nidhoes @l =~Medhaes Ghae = Ml + Aemboy

finally from Egs (4.2) we obtain

3
w(xo) = ‘j) {1, +w-‘r3}dn+zke{2ni a{) W—("C)"&dg,}+
k

aL {0, +ul0, +6IM, + WP, —u,0 ~u, 0 -0,M] —wF>}dl (8.1)
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8a(xo) =~ [0, {mTy + w'T 0 - [3;{ulQ, +uiQ, +O}M, + w'R, }dI+
Q o

+% Req 2miky ™ | (qm ~ Ghw, + 91 - ‘mez] L } (82)
al M M Ce

ve(Xo)= !}{uﬁ?}, +w“73}dﬂ+ajn {420, +u2Q, +62M, + WP, Jdi +

0.
+3 Re{Zm‘ | [—%ﬁu, +qnpwa ~- A. lik g, +t22k92) doy } (83)
sl My k Ce
Vg Sty +200,, thy = mbg, — ZoGap (8:, = a—i;) (8.4)
[+

In the regularized form in Eqs (8.1)—«(8.3), Cauchy-type singular integrals can be understood in the
sense of the principal value; the left-hand sides of Eqs (8.1) and (8.3) must then be replaced by 1/2w(x;)
and 1/2v4(xp), respectively; the left-hand side of Eq. (8.2) will not change.

The first boundary-value problem reduces to a system of Fredholm integral equations of the first kind
(8.2), (8.3) in the unknown forces and moments. The kernels of the equations have a weak singularity;
all the integrals are convergent.

The second boundary-value problem reduces to a system of singular integral equations (8.2), (8.3) in
the unknown displacements v, of the mid-plane z = z; in plan, and angles of rotation 6, of the sections.
In the optimum system of coordinates, where the norm of the operator of the association of the processes
of bending and tension—compression—shear is a minimum, generally speaking zo # 0 [3].

It is important to emphasize that although (according to (5.9)) the kernels of Eqs (4.2) have a higher-
order singularity than in the classical plane (bending) problem, the extra derivatives of the displace-
ments of type (7.2) in Egs (8.3) disappear because of the conditions for one-to-one correspondence
between the principal vector and the principal load moment.

9. We will show that the resulting system of BIE has a zero index, or is quasi-Fredholm [7, 8]. We
will denote the arc coordinate of the point xy € dQ by [y = ly(xg), { = x1 + ix5, ¢ = arg { and introduce
the functions

d¢ 1-|,
A0 = (b =T, g0 =2 £
dg, _ dt dl 9.1)
k=24 f(x )d¢——+g(x)dl+fk(x)d¢
& &
which are continuous on dQ. We then reduce the system of equations (8.2) and (8.3) to the following form
Ey(xo)+A | ,y—(xl-)-dl +H,(y)=F(x,) (9:2)
n t-bH
EY(XO)+ Aaj;1 y—(cx-)-dc+]'l2(y)=F(xo) (93)
where
= (91’62"’1»”2)1

-lk‘luk G Ny By
A, = -an xkqngk '_'ll311k Aty
A% ql ~dnk At —ta
A dk “‘1222k I ~th
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A =diag(0,0,~ }5,- ) = -3 Re(2miA, )

E is the identity matrix, the operators H;(y), Hx(y) are completely continuous in the space L,(aQ) (by
virtue of the fact that the kernels of (9.1) are continuous), and F(xy) is the right-hand side of the
equations, defined by the given boundary forces and moments on JQ.

Then for the index of the system of singular equations [7] (the increment of the argument of the
com%lex function det(E — A)/det(E + A) when dQ is traversed in a positive direction normalized by 2rx)
we obtain

1 deu(E-A)
d=— _ 7 =0,
ind = —— [mg det(E+ )] 0, det(EFA)=0

The four BIE (8.2), (8.3) or (9.2), (9.3) belong to the simplest class of systems of singular equations
with a zero index, all of whose Fredholm alternatives are satisfied [7, 8].

10. The equations for a plate which occupies the exterior region 2 = Q_in plan are analysed in exactly
the same way. The only difference in Eqgs (8.2), (8.3) or (9.2), (9.3) is the direction in which the contour
is traversed and the signs of the corresponding integrals.

11. We will now point out some properties of the fundamental solutions (5.8). From the form of the
Fourier transforms (5.3) and (5.4) it can be shown that

I
I
M(x,x,)= 12 vi wr | MT=M (11.1)

Note that we have omltted the coefficient € in front of the longitudinal loads (2.1), (4.1) for brevity;
generally speaking w* = —€ 03, It is not particularly important for the loads in (4.1) assigned on two
front surfaces to be symmetric. For example, if we put

1, =845(x'), o =848(x), 67 =0, T" =0
T, =858'(x’), T, =848(x")+2%840,5(x’)

we need only replace zo by z* in the total BIE, and the longitudinal displacements v¥ will correspond to
the front surface z = z*.

Equatlons (11.1) define the symmetric Green’s tensor in the statics of multilayer plates with arbitrarily
arranged anisotropic layers If the layers are symmetncally stacked zy = 0, the mixed stiffnesses D, =
0, the displacements w® = v, = 0 and p = p; s, that is, the eigenvalues A, spllt into independent pairs
for the bending and plane problems. In that case the fundamental solutions are the same as those
obtained in [8, 13].

12. We conclude by listing our main results. We have constructed a state of fundamental solutions
of the problem of the statics of an asymmetrically multilayered anisotropic plate, distinguished by the
fact that the processes of bending and tension—compression—shear are associated. On the basis of the
reciprocity theorermn, four BIE (8.2), (8.3) of the basic boundary-value problems have been identified.
The components of the contour integrals on the right-hand sides of the BIE can, by analogy with the
classical problems [8, 11], be called the potentials of the displacements, angle of rotation, longitudinal
forces, and bending and shear potentials of the plate, respectively. The first boundary-value problem
has been reduced to Fredholm equations of the second kind. The integral equations of the remaining
boundary-value problems are obtained from corresponding combinations of BIE (8.1)-(8.3). Although
formally the fundamental solutions yield second-order singularities, the form of the resulting equations
is the same as in the well-known BIE for the classical bending of single plates [11, 13] and the plane
problem [8, 10, 11]. The main difference is that the dimension is increased, since associated processes
are being considered.

Financial support for this work was provided by the Russian Foundation for Basic Research (96-01-
01098).
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