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EQUATIONS FOR THIN ELASTIC MULTILAYER 

ASYMMETRIC ANISOTROPIC PLATESt 

D.  D.  Z A K H A R O V  

Moscow 
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The matrix of quasistatic fundamental solutions of the averaged equations of elasticity for a thin multilayer plate of arbitrary 
asymmetric construction with general anisotropy of the layers is constructed. The main difference from the classical case arises 
when analysing the clnsely associated processes of bending and tension-compression-shear since, generally speaking, these plates 
do not contain a neutral plane (a plane that remains undeformed during bending). The reciprocity theorem in steady-state dynamics 
and statics is used to obtain integral identities. For the main types of related boundary-value problems of statics, a system of 
four boundary integral equations is derived. The singularities of the kernels are studied and the properties of the equations are 
investigated. O 1997 Elsevier Science Ltd. All rights reserved. 

1. The main purpose of this paper is to construct boundary integral equations (BIE) for the basic 
boundary-value problems of associated bending and tension--compression-shear of a thin multilayer 
elastic plate. The association is due to the asymmetrical arrangement of the layers over the depth and, 
at the same time, the substantial anisotropy of the layer material. In physical terms this means that, 
generally speaking, every longitudinal plane bends and deforms and there is no neutral plane. We 
consider the mosl~ general case where both the equations and the boundary conditions are closely 
associated, so thai: the additional terms are of the same order as the classical terms. 

A detailed analysis and classification of the equations and boundary-value problems has been given 
in [1-4]. In [3, 511 the problems of statics were solved by introducing complex potentials for the 
displacements, which enabled an analytic technique to be used akin to the method of Kolosov, 
Mysldaelishvili and Lekhnitskii [6-8]. However, in some eases it is preferable to use BIE. A thorough 
study has been made of their use in individual bending and planar problems [7-11], but not in associated 
situations. 

There are quite a few algorithms for the numerical solution of various BIE (the method of boundary 
elements, the method of expansion in terms of special polynomials, etc.) [9-12]. It is therefore possible 
to use standard i~rocedures. The method of complex potentials previously employed [5] is less 
standardized in this sense, although it is easy to use to obtain solutions in closed form for a number of 
canonical regions. 

2. We consider the stress-strain state (SSS) inside (far from the edges of) a thin packet of N ideally 
coupled elastic layers. The layers are arbitrarily arranged over the depth. For instance, they might be 
asymmetrically arranged about the mid-plane of the packet. It is assumed that eachj th layerj  = 1, 2, 

, N has a constant thickness hj and density p, and its elastic properties are described by the three- • -. . . . . 

dmaenslonal Hooke's law with stiffness raUo Gj. The general anisotropie case where each matrix Gj 
contains 21 independent constants is allowed. 

We shall assume that the half-thickness of the packet h is much smaller than the characteristic scale 
of deformation L i~ a longitudinal direction e = h/L ,< 1. We shall also assume that the ratios of the 
densities, the elastic and geometric parameters of the layers are incommensurate with e, that is, are of 
order one as e ~ +0, and the characteristic time of the dynamic process is quite large and of order not 
less than O(e-1). We denote the transverse and longitudinal Cartesian coordinates by x3 = z, x = lax= 
(ct = 1, 2), respectively, zj < ~+1 are the coordinates of the front surfaces of the j th  layer, and f~ is the 
region that the plate occupies in plan. Suppose that the normal and shear stresses on the front surfaces 
of the plate are given in the form 

~ =X~(x,t) (z-=Zr,  Z*=ZN+I) (2.1) (~33 =(r~(x,t),  Cra3 
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where o ~" = O(1), x ~ = O(~-1). The last condition is imposed for convenience, since it ensures that the 
limiting orders of response of the plate to shear and normal loads are equal. 

If the layers are both asymmetrically stacked and anisotropic, the asymptotic principal part of the 
SSS (with relative error O(~)) satisfies the following elasticity relations 

Wj=w(x,t), Uj=u(x , t )+zO 

--a/axe) 

eap = eotl3 + zO~tp, e~tl3 = ~ (al~utt + aotUl3 ), 0~  = a~0p 

) zj 

Q~3=apM~p, (tx,[~=l,2; 1~--~2) 

Xll = il (~{llt)l + T16~2) + i2(YI6~! + TI2¢~2) 

X,2 = i,(716a, + 766a2)+ i2(766a, + 7,,6a:,) 

1-' Tit 6 TI6 T;21I det(Gq ~) 
= 766 "/6211, Ypq=det(Go---" ~ ,  Go=G(34~) 

V2t 726 "/2211 

Here W~ and Uj are the deflection and longitudinal displacements (and are independent of the layer 
numher~, o/~ are the .stresses'. ~ and 0og are the deformations . . . .  and curvatures in the plane z = 0, Qap 
and M ~  are the longitudinal forces and moments m the plate sectmn, and Qa3 m the shearing force. 
For convenience in the calculations, we have slightly changed the expression for the shearing force of 
[5] and omitted the terms z+x + - z-~-~ on the right. 

The indices 4, 5, 6 in the initial 6 x 6 stiffness matrices G correspond to stresses with indices 23, 13, 
12. The matrices G are formed from the average stiffnesses of the current layer, Go is the principal 
minor in the initial matrix G, and the minor C~q is obtained by bordering the minor Go by thepth row 
and qth column below and to the right. These relations are discussed in more detail in [2-4]. The basic 
equations take the form [2, 3, 5] 

a~Xa[~(Di)u- a~Xc0(V2)grad w + T o =0  
(2.2) 

- O ~ X ~  (D2)u + { a ~ x ~  (D3) grad+ p.at2 }w = T3 

z j÷, Zj÷l (2.3) 
P. =E f pjdz, Ok-'-E f z -'rjdz 

J zj J zj 

T a : x : - x : ,  ~:C~+-t~-+div(z+,t+-Z-x-)  

The difference from the classical relations of the theory of plates of symmetric construction is that the 
equations of bending and the plane stressed state (2.2) are associated. In both the equations and the 
forces (moments), ~ e  bending (D3) and membrane stiffnesses (D1) are accompanied by non-zero mixed 
stiffnesses (D2) (5P+1 is the Kronecker delta, a[$ = 11, 12, 22) 

(2.4) 

Correspondingly the boundary conditions on aft [4, 5] are assigned jointly for the two types of equation 
(n and x are the unit vectors of the outward normal and the tangent, with a~  traversed in a positive 
direction): 
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the fu,st boundaJT-value problem----un, u~, On = "~nw, w are given; 
the second boundary-value problem--the longitudinal forces Qn and Q~, the bending moment Mn and 

Kirehhoff's shearing force Pn = Qn + aekl~ are given. 
One might also consider "crossed" (of the form un, Q~, On, In, for example) or mixed boundary 

conditions. In the Cauehy problem, the initial conditions at t = 0 are set only for the functions w and 

3. Suppose that the plate oscillates harmonically as e i°~ (this time factor is omitted below). Let 
V = (u~, w)and V tt = ( u ~  w ~) denote any two sets of displacements which give an SSS of a finite or 
infinite plate and correspond to individual loads T = (Ta, 7"3) and T ~ = ( T ~  T3~); the boundary 
conditions will be specified later. We will write the reciprocity relations which both SSS must satisfy. 
These will be of importance later, and so we shall discuss them in detail. Consider the "crossed" potential 
energy density ~, the kinetic energy x, the work of individual loads a and the vector ~1 = lark, ( ~  
I~= 1,2) 

~(v. v . ) =  ,~(~o~Q:, + oo~M:~), ~(v, v . ) :  - ~p.,oeww ~ 

a(V, T" ) :  u.T~ + w~ ~t, rI.(V,V~t) : u13Q~13 +Oi3Ma~13 + wO~ 3 

The reciprocity tA~eorem. For any two states V and V ~ of an asymmetrically multi-layered anisotropie 
plate, the following relations are satisfied 

~(V, V~)+ x(V, V ~ ) -  - n(V ~, V)+ ~(V ~, V) 
(3.1) 

o(v. V")-div V) 
,(V. V")+ V")-- V)+ V) 

, , ) -  a(v" + u. Q. 

-u,Q~ +O~M n -OhM ~ + wtt Pn-wP~ }dl 
(3.2) 

(rl,:~,A) = l ( m , x , a ) d a  
[l  

The proof can be obtained from the general theorem for a three-dimensional elastic body (applied to 
the asymptotic prmcil~l part of the SSS) or by t r a~ fon~g  Eqs (2.2), written in terms of the force and 
momentum 

aaQ~ + r~ = 0 

O~Ma[ ~ - p,(02w - o~aQct 3 - p,co2w = T 3 

to the form 

By virtue of Eqs (2.4) and the symmetry of the stiffness matrices, the expressions for the energy densities (3.3) 
are symmetric biline~tr forms for the deformations (curvatures) or forces (moments), whence Eqs (3.1) and (3.2) 
follow. 

Note that when multiplying by the frequency ice, we formulate Eqs (3.1) and (3.2) for the powers in 
an obvious way (without the factor 2 on the left-hand sides), while the vector "q will give the power flux 
density. 

4. We will derive the BIE by the standard method [8, 9]. Let V ~ -- V~(x, x0) be a formal solution of 
Eqs (2.2) for an infinite plate with individual loads in the form of delta functions. Then from relations 
(2.1), (2.3) and (3.2) for 
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= ~:½S"~S(x'), o z = ~:~d83"8(x') 

~"~" = 8"~(x'), ~# = ~"~(x')+ Zo~"~a~(x') (4.1) 

x ' = x - x o ,  Xoef~, Zo=~(z  ++z- )  

we obtain the relations 

8 w(xo)+ + zoO.(xo)}-- + :T.,}a + 

+ I {,."e. - . .e , "  +.~e~-.~e,"  + o.,M. - 
aft 

-OnM~ + w~ Pn - wPn ~ }dl. (4.2) 

From formula (4.2) we can determine the displacements at any point xo if the displacements and loads 
on the boundary ~f~ are known. Letting the point x0 approach the boundary ~f~, we obtain the BIE for 
the unknown boundary conditions. Using the above scheme, we obtain the fundamental solutions and 
BIE for problems of statics. 

5. We will find the Fourier transforms of the fundamental solutions of the equations of statics (2.2) 
with the right-hand sides (4.1) (omitting the superscript tt in obvious cases) 

f*(s)= : :f(x')e''dx~dx:, s=ias a 
--oo --oo 

f(s)= 1-~_2 : e-iStx[ds! : f* (x')e-iS2X~ds2 

We obtain 

(5.1) 

,,2 ,,31FI F! 
P21 P22 P23~ ii : g. 
]731 P32 P~uulIi"N Ilir;H r3"=s~-~o,~S~ 

where 

- -  - s x  2 s x  ipPc45=e-n~f;Xo~(Di)e n,  il3Pa3-e ~Xal3(D2)e 

P33 =e-SX~xto(D3)grade sx, Po = PltP22 - p22 (5.2) 

P = POP33 - P22p23 - Pn riP23 + 2P12P23PI3 
~(~ , ,~ )  = h~¢;, ~'(~,,~)-- h~¢  ~ 

h~ = bo~T; + iba3T;, h~ - b33Ta" -iba3T~ 

bll = P22P33 - / 7 2 ,  bl 2 = P13P23 - P12P33 

bl3 = PI2P23 - P22Pi3, b33 = Po (1 ~ 2) 

(5.3) 

(5.4) 

Expressions (5.2) give the homogeneous characteristic polynomials of the corresponding operators in 
Eqs (2.2); the homogeneous fourth-order polynomials p0(sl, s2), P33(Sx, s2) are characteristic of the 
operators of the plane problem and the bending problem with D2 = 0 and the homogeneous eighth- 
order polynomialp(sl, s2) is characteristic for the entire system (2.2). If p ffi I, 2, h~sb s2) and hg3(sb s2) 
are homogeneous polynomials of degree six and five respectively, h~(sb s2) and hS3(sb s2) are 
homogeneous polynomials of degree five and four. 
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Note that, by virtue of the fact that the system of equations (2.2) is elliptic [3], the equation 
p(sl,  s2) = 0 has no real roots. We will consider the general case of non-repeated characteristic roots 
~t and introduce the notation 

p(-,~,,,2 ) = A ( V l , V ~ , V , ) f i ( s ~ - , , ~ ) ( , 2 - ~ , ~ )  
k--I 

P(1,~'t)=0, ~t ~C, ImZ k >0, A(D, ,D2,D3)=const¢R 

rt(sl,S2) ---- ip(sI'S2) m-iA(DI,D2,D3)(s2-sI~.k)I]($2-sI~.I)(s2-sI~I) 
s2 -- SlJ~k I#t 

rt (I, ~. k) = 2(Im Z~ )A(DI, D2, D 3)I'I (~k -- ~l)(~'k -- ~l) I¢k 
r,(sl.sl~t)=~P(Sl'S2)[.~=s.~k, r, (I .~,)  =--~(I .~ , )  

0s 2 

It also follows from Eqs (5,4) that 

We will show that there are originals of (5.1) for displacements u~, w ~. 
1. We will first assume that sl e (--~, 0] and sv¢2 ~< 0 in the inner integrals of (5.1). Integrating with 

respect to s2 ~ [-R, R], we close the contour of integration in the lower complex half-plane Im s2 ~< 0 
by the semi-circle ]~'R: s2 = Re it. Then, for sufficiently large R (performing the summation from k = 1 
to k = 4, ~ = x~ + kt.r'2) we have 

{~-R--:R} (u~)*e-is2xlds2=-2xi = ~.ts, Res{(u~)* e-iS2~2 } 

rR 

7 h i ( s | '  s2 ) e-iS2X2ds2 = - - -  e-'S'xkx2 
(5.5) 

o , h~( l ,~ . t ]o  " e-iS,¢k 
"*, / J dsl 

- o o  - o e  

2. Considering the outer integrals along the rays1 ~ (0, +oo], srr' 2 ~> 0 in (5.1), we obtain the conjugate 
expressions to (5.5). Continuing in this way for the other displacements, we obtain 

u~ = -2ZRe{c~ l l (~ t )}  , Re(is,~k)~< 0 

II ll: (H } -  w~ -2Y.Re t 12(~k) (co, i t= l ,2 )  (5.6) 
u c 

} 

I~ (r,k) = i ei#;* sTds l  = 
, , 3;i} 

Inr,  ... - - + n  
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cV, II_ l II/h (L ,)ll 
&ll- 2=r*O,~k)ilih~O:;~*)U 
c ,ll II-h (L  )ll 

(5.7) 

where T is Euler's constant. 
Notice that the contribution to the displacements corresponding to the term 3~//2 is zero. For this 

reason, the result is the same for x' 2 ~> 0 and x'2 ~< 0. This can be verified directly and its physical 
interpretation will be given below. The final expressions for the displacements, angles of rotation of 
segments, forces and moments will take the form 

w 3 = 2 ~ , R e { c ] k f ( ~ k ) } ,  u 3 = 2,y..,Re{c~tf'(~k) } 

0 3 = 2Y~ Re{~.~-'cJJ'(~t)} 

w ta = 2,y_..,Re{c3~,f'(;t)}, u~ = 25".Re{c~f"( ; t )  } (5.8) 

0~ = 2Y. Re{~.~-tc~kf"(~)} 

f(~k) = ~2( ln~k +Y-~) 

~ p  = 2T.Re{q~/cf"(~t)}, Q~3 =2T.Re{q~3k~; I } 

Q-~.p = 2}"- Re{qt~p~;;' }, Q~3 =2'T-Re{q:3t;; 2 } (5.9) 

3 I~ (Q~p, Q~ 3 tt. 3 , q~t  <-> mapt, mapt ) M~p, Map, qa~ 

where qapk, mapk, q ~  are rational-fractional functions of the characteristic roots ~ obtained 
by substituting the displacements (5.8) into expressions (2.4). At the point x = x0 the displacements 
u~(x, x0), angles of rotation 0~(x, x0), forces and moments Q3ap(X, x0) and M3ap(x, x0) have an integrable 
(logarithmic) singularity. The functions u~ = nau~  u~ = xau~, Q3n = n2Q]l + 2nln2Q]l 2 + n ~ 1 2  = 

2 3 n 2Q22, Q3 = nln2(Q322 _ Q]I) + ( n2 - n22)Q]12 (u <-> 0, Q <--> M, n = i ~ ,  ~ = iaxa) behave in exactly the 
same way. The functions Qaap(x, xo), M~aa(X, xo) and Q3a3(x, xo) (like the functions Q3~3 = n~73a3, 
P3n(X, X0)) have a simple pole; the functions Q~,~(x, xo) and Pn(x, Xo) have a second-order pole. 

The second-order singularities appear because it is an associated bending and tension- 
compression-shear problem. They do not arise for a symmetrically-stratified plate D2 = 0, Zo = 0. This 
creates an additional difficulty and requires special investigation. 

6. Generally speaking, the fundamental solutions (5.8) are determined to the accuracy of any solution 
of Eqs (2.2) with zero right-hand side. Solutions of a homogeneous system of equations of this kind 
can be obtained by the method of complex potentials [3, 5], for instance. The fact that formulae (5.8) 
contain multivalued (logarithmic) functions is important. The coefficients c~k, c~t, c 3 ,  c 3 in the 
logarithms are also completely determined by the method of potentials starting from the condition that 
the displacements, angles of rotation, deformations and curvatures (or longitudinal forces and moments) 
are single-valued, provided that the principal vector and principal moment of individual loads (4.1) and 
boundary loads (for the solution (5.8)) correspond on any closed contour that includes the point x0. 
The expressions for the constants are the same as (5.7). Thus, the kernels of Eqs (4.2) are single-valued 
functions, and the logarithmic components in the solutions (5.8) give the simplest and minimal set of 
multivalued functions needed to construct them. 

A detailed general analysis of the 20 relations of one-to-one correspondence is given in [5]. We give 
some of these for loads (4.1) 
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[I] m ~  I} J -  ~ 5~ ~ (St = 1,2,3) 

Y.Re{i~2c~}=O, ~Re{i~c~}=O, ~Re{ic~}=O 

(6.1) 

The last three equations have already been taken into account in formulae (5.8) in the transforms In(~) 
of the generalized functions; they express the fact that the displacements and angles of rotation are 
single-valued. 

7. To transform Eqs (4.2) with kernels (5.8), we will prove an auxiliary assertion. We consider a singular 
integral over the ~mfficienfly smooth contour ~fl of a simply-connected region fl (1 is an arbitrary arc 
coordinate) 

~a ~'  , x ~ f l ,  X o ~ f l  

where f(x), ~t 'n: f(m~ = 1, 2 . . . .  , m - 1) are real functions of the H61der class on ~[2 which have a 
smooth continuation in the region fl__ remaining on the left (right) when ~f~ is traversed in a positive 
direction. We intnxluce the functionsgk(x) = (x~ + ~x2)q, ,r = i,~x~,, the unit tangent vector at the point 
x ~  ~fl. 

Lemma. The limiting behaviour of the function 

is governed by the; equations (V.p. is the principal value of the integral) 

- r ~ (~(x),x0) (m-1)F.~,k(f .xo ) - m-,k 

f(x)  .1 Fl:~(f, xo)=~i  :gFk(x0)+V.p. ~ .-v--dl'f 
~k J 

(7,1) 

I F2%(f, xo)=gi :[:~,(Fk(XO))gk(Xo)+ V.p.~. ~ J 

F k (x) 5 f(x)g k (x) 

The proof folk~s's from the Sokhotskii-Plemelj [7] theorem and the equations 

dt f(x) = I 

d~, =gk(x)' ~ m-I 

8. Suppose, to fix our ideas, that the region L2 = [2+ in Eqs (4.2) is finite and simply-connected 
and has a sufficiently smooth boundary. Let the point x0 ¢ f~+ approach the boundary of the 
region. Using representations (5.8) and (5.9), formulae (7.1), relations (6.1) and the equations 
(St = 1, 2, 3) 

q~k -~'kq~2k 2 
= = ~'kq22k, q~k = --~'kq~3k. q~3k = m~lk + ~'km~2~ 

finally from Eqs (4.2) we obtain 

W(Xo) = ~n{u~T~ +w3T3 }d~'2 + Y.Re{2~i~ W(X)q~-~k~k d~k } + 

U3 (8.1) 
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+~ReI2ni~.~-' ~ ( q31kO, --q~2~2 t311k a -t~2~02 Id~k l 

va(Xo)-- ~ {u~Tp +wa~ }d"+  J ,  {unaQ~ +u~Q, + O:M, +w~Pn }dl + 

(8.2) 

u a-uct+ZoOa, t~l~t--m~Xt-Zoq~l~ (~*a" ~a )  

(8.3) 

(8.4) 

In the regularized form in Eqs (8.1)-(8.3), Cauchy-type singular integrals can be understood in the 
sense of the principal value; the left-hand sides of Eqs (8.1) and (8.3) must then be replaced by 1/2w(x0) 
and 1/2va(x0), respectively; the left-hand side of Eq. (8.2) will not change. 

The first boundary-value problem reduces to a system of Fredhoim integral equations of the first kind 
(8.2), (8.3) in the unknown forces and moments. The kernels of the equations have a weak singularity; 
all the integrals are convergent. 

The second boundary-valueproblem reduces to a system of singular integral equations (8.2), (8.3) in 
the unknown displacements v~ of the mid-plane z = z0 in plan, and angles of rotation 0a of the sections. 
In the optimum system of coordinates, where the norm of the operator of the association of the processes 
of bending and tension-compression-shear is a minimum, generally speaking z0 ~ 0 [3]. 

It is important to emphasize that although (according to (5.9)) the kernels of Eqs (4.2) have a higher- 
order singularity than in the classical plane (bending) problem, the extra derivatives of the displace- 
ments of type (7.2) in Eqs (8.3) disappear because of the conditions for one-to-one correspondence 
between the principal vector and the principal load moment. 

9. We will show that the resulting system of BIE has a zero index, or is quasi-Fredhoim [7, 8]. We 
will denote the arc coordinate of the point x0 ~ 0f~ by l 0 =/0(x0), ~ = x] + b:2, ~ = arg ~ and introduce 
the functions 

f t ( x ) = ( Z t - i ) ~ i ; ,  g (x)=d~ l - l  o_1 

(9.1) 

d~t~t =~+f'(x)d#~=ld--~llo+g(x)dl+f'(x)d¢~ 

which are continuous on ~£~. We then reduce the system of equations (8.2) and (8.3) to the following form 

E y ( x o ) + A  ~ y(x) dl+Hl(y)=F(xo) (9.2) 
l-lo 

Ey(xo)+A ~ Y(~d~+H2(Y)= F(xo) (9.3) 
8fi 

where 

I) T y = (01 , 0 2,u |, 2) 

Ak = ll-qllt ~'kq~2~ 

[[Z~'q2lk --q222k 

-1 3 3 
- -~k  fl Ik t22k~ 

3 3 
- - t i l t  ~,kt22k U 

-I 1 I ~k tllk --t22kl -I 2 2 ~k tllk --t22k~ 
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A = diag( 0, 0 , -  ~ , -  ~ )  = - ~ Re( 2 giA k ) 

E is the identity matrix, the operators Hi(y), H2(y) are completely continuous in the space L2(0f~) (by 
virtue of the fact that the kernels of (9.1) are continuous), and F(x0) is the right-hand side of the 
equations, defined by the given boundary forces and moments on ~'~. 

Then for the index of the system of singular equations [7] (the increment of the argument of the 
complex function det(E - A)/det(E + A) when ~'~ is traversed in a positive direction normalized by 2~) 
we obtain 

- I ~ de t (E-A)  1 =0, det(E~A)~e0 
ind = ~'~Larg det(E + A) an 

The four BIE (8.2), (8.3) or (9.2), (9.3) belong to the simplest class of systems of singular equations 
with a zero index, all of whose Fredhoim alternatives are satisfied [7, 8]. 

1 0 .  The equations for a plate which occupies the exterior region f~ = fL in plan are analysed in exactly 
the same way. The only difference in Eqs (8.2), (8.3) or (9.2), (9.3) is the direction in which the contour 
is traversed and the signs of the corresponding integrals. 

11. We will now point out some properties of the fundamental solutions (5.8). From the form of the 
Fourier transform,,; (5.3) and (5.4) it can be shown that 

M(x, xo)= v~ v 2 w 2 , M T = M  (11.1) 
_ w  3 

Note that we have omitted the coefficient E -1 in front of the longitudinal loads (2.1), (4.1) for brevity; 
generally speaking w a = ~- lv~.  It is not particularly important for the loads in (4.1) assigned on two 
front surfaces to be symmetric. For example, if we put 

= a ÷ = = 0 ,  = 0 

= = + z÷s 0j(  ' )  

we need only replace z0+by z + in the total BIE, and the longitudinal displacements v~ will correspond to 
the front surface z = z . 

Equations (11.1) define the symmetric Green's tensor in the statics of multilayer plates with arbitrarily 
arranged anisotropic layers. If the layers are symmetrically stacked z0 = 0, the mixed stiffnesses De = 
0, the displacements w a = v~ = 0 andp = P0P33, that is, the eigenvalues ~ split into independent pairs 
for the bending azld plane problems. In that case the fundamental solutions are the same as those 
obtained in [8, 13]. 

12. We conclude,' by listing our main results. We have constructed a state of fundamental solutions 
of the problem of the statics of an asymmetrically multilayered anisotropic plate, distinguished by the 
fact that the processes of bending and tension--compression-shear are associated. On the basis of the 
reciprocity theorem, four BIE (8.2), (8.3) of the basic boundary-value problems have been identified. 
The components c)f the contour integrals on the right-hand sides of the BIE can, by analogy with the 
classical problems [8, 11], be called the potentials of the displacements, angle of rotation, longitudinal 
forces, and bending and shear potentials of the plate, respectively. The first boundary-value problem 
has been reduced to Fredholm equations of the second kind. The integral equations of the remaining 
boundary-value problems are obtained from corresponding combinations of BIE (8.1)-(8.3). Although 
formally the fundamental solutions yield second-order singularities, the form of the resulting equations 
is the same as in the well-known BIE for the classical bending of single plates [11, 13] and the plane 
problem [8, 10, 11]. The main difference is that the dimension is increased, since associated processes 
are being considered. 
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